ĸ

Ð

l

<u>N1</u>

TP 20: Redressement commandé : pont tout thyristors TP simulation

<u>Objectifs du TP</u> : - réaliser, avec un logiciel de simulation, des montages redresseurs en pont tout thyristors ; - relever les oscillogrammes de divers tensions et courants dans ces montages.

I. PONT TOUT THYRISTORS SUR CHARGE RESISTIVE

1.1 Réalisation du schéma de simulation

Nous allons simuler le montage redresseur commandé en pont tout thyristors (ou « pont complet ») à l'aide du logiciel ORCAD/PSPICE.

Remarque : une aide du logiciel, sous forme de pages de démonstration, vous est fournie. Pour cela, doublecliquez sur l'icône « Aide pour PSPICE ».

1- Saisissez le montage dont le schéma est donné en annexe (au besoin : revoyez les deux premières étapes de l'aide).

Vous prendrez pour :	V1 : une alimentation continue VSIN (bibliothèque : NORMEURO)
	TH1, TH2, TH3 et TH4 : des thyristors Thmono (bibliothèque: ENREA5)
	R : une résistance R (bibliothèque : NORMEURO)
	PARAMETERS : le composant PARAM (bibliothèque : SPECIAL)
	Masse : le composant 0 (bibliothèque : SOURCE).

Pour l'angle de retard à l'amorçage des thyristors (l'angle **alpha**, exprimé en degré ici) :

- commencez par regarder attentivement le début de l'étape n°5 de l'aide (les vues 1 à 22). Cette étape vous montre comment vous servir du composant PARAM.

- Ensuite, double-cliquez sur TH1, et **saisissez** dans la case au-dessous de ALPHA {alpha} (n'oubliez pas les accolades). **Faites** de même pour TH3.

- Pour TH2 et TH4, **saisissez** {**alpha+180**} (ces deux thyristors sont amorcés une demi-période après l'amorçage de TH1 et TH3).

- enfin, ajoutez une colonne au composant PARAM, (appelée « alpha »), etc ... comme montré dans l'aide.

Pour vous faciliter par la suite, nommez **charge** le point du circuit relié aux cathodes de TH1 et TH2 comme sur l'annexe, à l'aide du bouton « place net alias », symbole N1, dans la barre verticale à droite.

2- Faites une simulation temporelle, pour α =20°, en prenant les paramètres suivants : Run to time : 60ms ; Start saving data after: 40ms, maximum step size: 0.1ms Au besoin, revoyez l'étape n°3 : simulation temporelle de l'aide. Vous visualiserez: les tensions d'entrée (V1) et aux bornes de la charge dans une fenêtre le courant dans la charge dans une autre fenêtre.

1.2 Relevés d'oscillogrammes

1- Relevez les allures des tensions et ci-dessus, en concordance de temps, sur la feuille fournie par le professeur.

2- Indiquez en bas des relevés d'oscillogrammes les intervalles de conduction des 4 thyristors.

3- Le montage fonctionne-t-il en conduction continue ? Justifiez.

II. PONT TOUT THYRISTORS SUR CHARGE RESISTIVE ET INDUCTIVE

2.1 Montage

1- Ajoutez en série avec une résistance de 100 ohm, une bobine (composant : L de la bibliothèque NORMEURO), d'inductance 1 H.

2- Faites une simulation temporelle, pour α =20°, en prenant les paramètres suivant :

Run to time : 60ms ; Start saving data after: 40ms, maximum step size: 0.1ms

Visualisez les mêmes grandeurs.

2.2 Relevés d'oscillogrammes

1- Relevez les allures des tensions et ci-dessus, en concordance de temps, sur la feuille fournie par le professeur.

2- Indiquez en bas des relevés d'oscillogrammes les intervalles de conduction des 4 thyristors.

3- Le montage fonctionne-t-il en conduction continue ? Justifiez.

4- Déterminez la valeur limite de α pour laquelle on a la conduction continue.

III. PONT TOUT THYRISTORS SUR CHARGE TRES INDUCTIVE

Une charge fortement inductive lisse quasi-parfaitement le courant. Pour symboliser une charge inductive (et réversible), on prendra comme charge une source idéale de courant.

3.1 Montage

1- **Remplacez** la charge RL précédente par une source idéale de courant (composant : IDC de la bibliothèque SOURCE) débitant un courant de 1A (attention au sens... Réfléchissez !).

2- Faites une simulation temporelle, pour α =20°, en prenant les mêmes paramètres que précédemment, et en visualisant les mêmes grandeurs.

3.2 Relevés d'oscillogrammes

1- Relevez les allures des tensions et ci-dessus, en concordance de temps, sur la feuille fournie par le professeur.
2- Indiquez en bas des relevés d'oscillogrammes les intervalles de conduction des 4 thyristors.

3.3 Tracé de la caractéristique <u> (α)

L'objectif est de tracer les variations de la valeur moyenne de la tension aux bornes de la charge en fonction du retard à l'amorçage. Pour cela, nous allons effectuer une simulation paramétrique en faisant varier alpha, puis utiliser une *goal fonction*.

1- **Visualisez** attentivement, dans l'aide pour Pspice, le complément intitulé « analyse de performancescaractéristiques <u>=f(alpha) ». Cette démonstration a été réalisée avec un pont mixte.

2- **Supprimez** toutes les sondes de tensions et de courants du montage, puis **réalisez** une analyse de performances pour le montage en pont tout thyristors.

3- **Relevez** l'allure de la courbe $\langle u \rangle = f(\alpha)$, ainsi que les coordonnées des points remarquables (points extrêmes, points pour lequel $\langle u \rangle = 0$...). Cette allure était-elle prévisible ?

ANNEXE : pont complet sur charge résistive