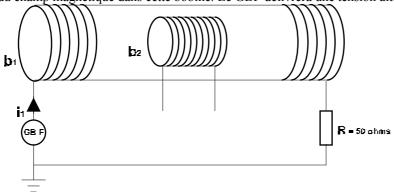
TP n°25: induction électromagnétique

Objectifs du TP: - observer à l'oscilloscope des tensions et courants induits;


- vérifier la loi de Lenz.

I Préparation

Le dispositif comporte deux bobines imbriquées b₁ et b₂ isolées électriquement.

Caractéristiques de b_1 : bornes noires, $N_1 = 200$ spires , longueur $l_1 = 405$ mm. Caractéristiques de b_2 : bornes rouges, $N_2 = 200$ spires, longueur $l_2 = 405$ mm.

On souhaite réaliser le montage suivant, afin de relever à l'oscilloscope la tension induite dans la bobine b_2 , créée par la variation du champ magnétique dans cette bobine. Le GBF délivrera une tension alternative triangulaire.

- 1- **Indiquez** quelle est la bobine qui joue le rôle d'inducteur (créatrice du champ magnétique) et celle qui joue le rôle d'induit (siège du phénomène d'induction).
- 2- Pourquoi le champ magnétique dans la bobine b₂ variera-t-il?
- 3- Indiquez les branchements à l'oscilloscope pour relever Ri₁(t) sur la voie I et e₂(t) sur la voie II.

II Manipulation n°1

Le GBF délivre un signal triangulaire de fréquence f = 1 kHz évoluant entre -2.5 V et 2.5 V. On prendra $R = 47 \Omega$.

- 1- **Câblez** le circuit inducteur, et **visualisez** u_{GBF}(t) à l'oscilloscope. Ensuite seulement **réglez** le GBF et **faites vérifier** le réglage.
- 2- **Réalisez** le reste du montage, et **visualisez** Ri₁(t) et e₂(t).
- 3- **Relevez** les oscillogrammes de $Ri_1(t)$ et de $e_2(t)$ en concordance de temps.
- 4- En déduire le graphe de i₁ (t).
- 5- Diminuez l'amplitude de i₁ (en diminuant celle du signal du GBF). Observez l'évolution de l'amplitude de e₂.
- 6- Lorsque i₁ (t) croît linéairement, **quel est** le signe de la e₂ ? **Expliquez** le, avec la loi de Lenz (on précise que le constructeur a bobinés les deux enroulements dans le même sens).
- 7- **Même question** lorsque i₁ (t) décroît.

III Manipulation n°2

On supprime à présent la résistance R (la remplacer par un fil ou un pont).

- 1- **Proposez** un schéma du montage permettant de visualiser en concordance de temps $e_i(t)$ et $e_1(t)$ en concordance de temps, $e_1(t)$ étant la tension induite aux bornes de b_1 , orientée dans le même sens que $i_1(t)$ (et que $e_2(t)$ aussi d'ailleurs).
- 2- Faites les relevés, pour une tension du GBF sinusoïdale, de fréquence f = 1kHz évoluant entre -5V et 5V.
- 3- Comparez le rapport e_{2max}/e_{1max} avec le rapport N_2/N_1 .
- 4- Pour différentes valeurs de N_1 , ${\color{red} comparez}$ les rapports $e_{2max}/$ e_{1max} et N_2/N_1 .
- 5- Qu'a-t-on (presque) réalisé ici?

IV Manipulation n°3

On dispose de deux autres bobines imbriquées (avec un noyau de fer à l'intérieur). On souhaite déterminer le nombre de spires de la bobine extérieure, sachant que la bobine intérieure possède elle 252 spires.

En vous appuyant sur les résultats de la manipulation n°2, **proposez** une petite manipulation permettant de déterminer ce nombre de spires ... et **réalisez-la** après accord de votre (cher) professeur !