TP n°19 : Simulation de circuits résonants en régime sinusoïdal

Objectifs du TP :

- prendre en main le logiciel de simulation électronique Orcad/ Pspice ;
- retrouver les courbes et les résultats du TP n°18 « circuit RLC en régime sinusoïdal ».

I. <u>Circuit RLC serie</u>

On souhaite simuler le montage du TP 18, à l'aide du logiciel ORCAD/PSPICE.

Le schéma du montage est donc le suivant :

 u_{sin} : tension sinusoïdale, de valeur efficace 3 V (et donc d'amplitude 3 = 4.24 V), de fréquence f variable ; R : résistance de 47 Ω ; L : inductance de la bobine L = 4.7 mH ; R_b: résistance interne de la bobine R_b = 10 Ω ; C : capacité du condensateur C = 470 nF.

1.1 Analyse temporelle du circuit, pour f = 1 kHz

1-Une aide du logiciel, sous forme de pages de démonstration, vous est fournie : **double-cliquez** sur l'icône « Aide pour PSPICE ».

2- **Regardez** attentivement l'étape n°1 : création d'un projet ORCAD, et **faîtes de même**, en appelant votre montage « rlcserie » (ATTENTION : Ne mettez AUCUN ACCENT, sous peine d'erreurs au moment de la simulation ...), et en l'enregistrant dans un dossier «rlc » que vous aurez créé, sous-dossier du dossier C:\docseleve\simulation.

le courant du circuit (courant I(R) par exemple) sur un autre axe.

1.2 Analyse fréquentielle du circuit

1- **Regardez** l'étape n°4 : analyse fréquentielle, et **faites de même** en faisant les adaptations suivantes : pour usin, prenez **AC=3V**, car en TP, lorsqu'on faisait varier f, on maintenait la valeur efficace de la tension de sortie du GBF à 3 V rappelez-vous !

Vous **observerez** : la courbe I(f) sur un premier axe, la courbe Z(f) sur un deuxième axe, la courbe $\varphi(f)$ sur un troisième axe.

pour f variant de 1 à 10 kHz

 $\underline{Rappels}$: Z(f) : module de l'impédance du circuit Z en fonction de la fréquence f.

Z = = V(usin:+)/I(R) par exemple.

 ϕ déphasage du courant i par rapport à la tension $u_{\text{sin}}.$

 $\phi = \phi_u - \phi_i = P(V(usin:+)) - P(I(R))$, car la phase avec PSPICE est donnée par la fonction P().

2- A partir de ces caractéristiques, et grâce aux boutons du curseur, **déterminez** précisément la valeur de f_0 , fréquence de résonance de ce montage, ainsi que la valeur efficace I_0 du courant à la résonance. **Comparez** ces valeurs à celles déterminées expérimentalement et théoriquement lors du TP 18.

3- Mesurez à l'aide du RLCmètre fourni par votre professeur, les valeurs précises de R, R_b, L et C des trois dipôles réels. En déduire les nouvelles valeurs de f₀, fréquence de résonance du circuit, et de I₀. Modifiez sur votre fichier de simulation ces valeurs et lancez la simulation. Remesurez I₀ et f₀ pour cette simulation, et comparez ces valeurs avec celles nouvellement calculées ainsi qu'avec celles déterminées expérimentalement. La simulation donne-t-elle des résultats proches de la réalité ?

1.3 Analyse paramétrique du circuit

1- **Regardez** l'étape n°5 : analyse paramétrique, et **faites de même**. Vous observerez la courbe I(f) pour trois valeurs différentes de R : 47 Ω , 100 Ω et 220 Ω .

2- Commentez l'évolution de la courbe I(f) si f augmente. La fréquence de résonance a-t-elle changée ? Comment évolue $I(f_0)$, lorsque R augmente ?

3- Faites une autre analyse paramétrique, en fixant R à 47 Ω et en choisissant C comme paramètre. C prendra deux valeurs : 470 nF et 1880 nF. **Observez** la caractéristique obtenue. **Mesurez** la nouvelle fréquence de résonance f'₀ et **justifiez**-la. L'intensité I(f'₀) est-elle modifiée, si C augmente ?

2.1 circuit RLC parallèle attaqué par un générateur de courant

1- **Faites** le montage suivant, en prenant comme générateur le générateur de courant Isin (de la bibliothèque SOURCE). **Réglez** sa fréquence à 1 kHz, et son amplitude à 1 A.

2- Faites une simulation temporelle, sur deux périodes du courant i_{sin} , et visualisez les allures de i_{sin} dans une fenêtre et de u dans une autre.

3- Faites une analyse fréquentielle, pour f variant de 1 kHz à 10 kHz, et visualisez l'allure de U (f). Justifiez le nom de « résonance en tension » donné à ce circuit. Déterminez la valeur de la fréquence de résonance f_0 .

2.2 circuit RLC parallèle attaqué par un générateur de tension

1- A la place du générateur de courant, **placez** un générateur de tension sinusoïdal (Vsin, comme dans la partie I), d'amplitude 4.24 V et de fréquence variable.

2- Faites une analyse fréquentielle (pour f variant de 1 kHz à 10 kHz), et visualisez l'allure de I (f) [I est la valeur efficace du courant débité par le générateur de tension]. La valeur de la fréquence de résonance a-t-elle changée ? Mesurez I(f_0). Justifiez le nom de « anti- résonance en intensité » donné à ce montage.