NOM, Prénom:

Devoir n°9: hacheur série et machine à courant continu

	BACCALAURÉAT TECHNOLOGIQUE	3PYGMME1
Série	SCIENCES ET TECHNOLOGIES INDUSTRIELLES	SESSION 2003
Épreuve	SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE	Durée : 2heures
Spécialité	GÉNIE MÉCANIQUE	Coefficient: 5

Il est rappelé aux candidats que la qualité et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

L'usage des calculatrices est autorisé pour l'épreuve. Circulaire n°99-186 du 16/11/1999

Depuis plusieurs années, la qualité de l'air n'a cessé de se dégrader, principalement en milieu urbain. L'industrie automobile a dû s'adapter à ces nouvelles contraintes en promouvant le véhicule électrique et plus récemment en développant la gamme des scooters électriques.

A Étude du système motorisé (8 points)

Le moteur d'entraînement utilisé est un moteur à courant continu à excitation indépendante et à flux constant. Il possède les caractéristiques nominales suivantes :

Tension d'alimentation de l'induit : U_N = 18 V ; Intensité du courant dans l'induit : I_N = 100 A Fréquence de rotation : n_N = 4 300 tr.min⁻¹ ; Résistance de l'induit : R = 5 m Ω .

- 1. **Représenter** le schéma du modèle électrique équivalent de l'induit du moteur.
- 2. Calculer la force électromotrice induite nominale E_N.
- 3. **Montrer** que la force électromotrice E (en volt) peut s'écrire $E = k\Omega$ où Ω désigne la vitesse angulaire du moteur exprimée en radians par seconde.
- 4. Calculer, pour le fonctionnement nominal :
 - 4.1- La puissance électrique absorbée P_a par l'induit ;
 - 4.2- La puissance perdue par effet joule P_j par l'induit,
 - 4.3- La puissance électromagnétique P_{em};
 - 4.4- La puissance utile P_u sachant que l'ensemble des pertes magnétiques et mécaniques vaut 125 W ;
 - 4.5- Le rendement du moteur sachant que le circuit inducteur absorbe une puissance de 90W.

3PYGMME1 Page 1 sur 2

NOM, Prénom:

<u>B Étude du variateur électronique de vitesse</u> (12 points)

Pour l'alimentation de l'induit du moteur à courant continu (MCC), la structure du variateur retenue par le constructeur est un hacheur série représenté ci-contre.

Celui-ci est constitué:

- d'un interrupteur électronique H commandé de la manière suivante :
- · H fermé de 0 à α T
- · H ouvert de aT à T

 $\mathbf{D}_{\mathtt{RL}}$

u,

 \mathbf{H}

u

Avec α : rapport cyclique variable (0 < α < 1) et T : période de fonctionnement du hacheur ;

- d'une batterie d'accumulateurs de tension nominale $U_B = 18 \text{ V}$;
- d'une diode de roue libre D_{RL} supposée idéale ;
- d'une bobine de lissage d'inductance L suffisamment élevée pour obtenir un courant i=I=constant.

 $U_{\scriptscriptstyle B}$

- 1. **Quel type de conversion** d'énergie un hacheur série réalise-t-il ?
- 2. On se propose de visualiser les variations de la tension u_c(t) et de l'intensité du courant i_H(t). **Compléter** la figure ci-dessus en précisant les appareils et les branchements nécessaires pour visualiser ces deux grandeurs.
- 3. Le convertisseur fonctionne à une fréquence de 20 kHz avec un rapport cyclique $\alpha = 0,4$. Calculer la période T de fonctionnement du hacheur.
- 4. **Tracer** l'allure de $u_c(t)$ pour $\alpha = 0,4$. On prend 1 carreau pour 2 V et 1 carreau pour 10 μ s. **Préciser** les intervalles de temps pendant lesquels l'interrupteur H est fermé et ouvert.
- 5. Calcul et mesure de valeur moyenne.
 - 5.1- En utilisant la méthode des aires, **montrer** que la valeur moyenne $< u_C > s'écrit :$

$$< u_C > = \alpha U_B$$

- 5.2- Calculer numériquement $< u_C >$ quand $\alpha = 0.4$ et $U_B = 18$ V.
- 5.3- Avec quel type d'appareil de mesure et quelle position du commutateur (alternatif ou continu) peut-on mesurer $< u_C > ?$
- 6. Étude de la commande de vitesse.

En négligeant la résistance d'induit, la tension aux bornes du moteur s'écrit :

$$< u_M > = 0.004 \text{ n}.$$

Dans cette formule n désigne la fréquence de rotation du moteur exprimée en tr.min⁻¹.

- 6.1- Justifier l'égalité $< u_M > = < u_C >$. En déduire l'expression de n en fonction de α .
- 6.2- La vitesse linéaire du scooter (exprimé en km.h-1) peut s'écrire V_{SC} = 0,01 n . **En déduire** l'expression de V_{SC} en fonction de α .
- 6.3- Calculer la valeur maximale de la vitesse du scooter.

Remarque: une troisième partie (étude énergétique) sur 3 points a été supprimée pour le devoir.

3PYGMME1 Page 2 sur 2