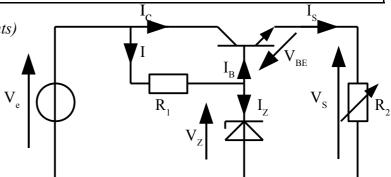
Devoir n°4: composants de base en électronique et amplificateur opérationnel

Exercice 1: stabilisation de tension (7 points)

On donne:


 $\beta = 100$; $V_{BE} = 0.7$ V; $R_1 = 200 \Omega$.

La diode Zener est passante si $I_z > 5$ mA:

on a alors $V_z = E_z = 12 \text{ V}$

La charge est une résistance variable R₂.

Le transistor fonctionne en régime linéaire.

- 1- Montrez que la tension V_S est constante, quelque soit R₂, lorsque la diode Zener est passante.
- 2- Dans le cas où la tension $V_e = 15 \text{ V}$
 - 2.1 Calculez l'intensité du courant I si la diode Zener est passante.
 - 2.2 **En déduire** l'intensité maximale I_{bmax} du courant de base qui permet de conserver la tension V_s constante.
- 2.3 **Montrez** que l'intensité maximale I_{smax} que peut débiter le circuit tout en conservant la tension V_s constante est alors de 1,0 A.
 - 2.4 **Quelle est** dans ce cas la puissance dissipée $p_D = V_{CE}$. I_C par le transistor ?
- 3- Le circuit débite dans la charge R_2 un courant d'intensité $I_S = 300$ mA. **Quelle est** la valeur minimale de V_e permettant de maintenir la tension V_S constante ?

Exercice 2: dispositif de signalisation d'une surcharge (BTS AE 2004) (13 points)

Le montage du document 1 (page suivante) permet de signaler une surcharge lors de l'utilisation d'une machine subissant des contraintes mécaniques importantes (levage, traction, ...).

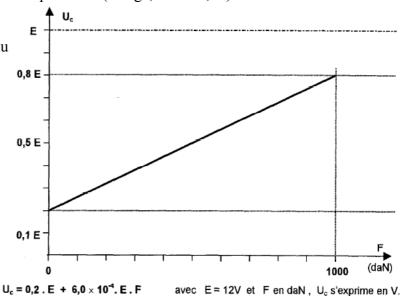
Données:

La caractéristique tension-force $U_C = f(F)$ du capteur de force du montage est donnée cicontre:

$$R = 1.0 \text{ k}\Omega, R_p = 560 \Omega, R_b = 3.9 \text{ k}\Omega,$$

 $R_r = 100 \Omega$.

L'amplificateur opérationnel est supposé parfait avec comme tensions de saturation :


$$V_H = E = 12 \text{ V et } V_L = 0 \text{ V}.$$

Tension de seuil des DEL : $U_{del} = 2,1 \text{ V}$.

Le transistor utilisé fonctionne en commutation saturé/bloqué.

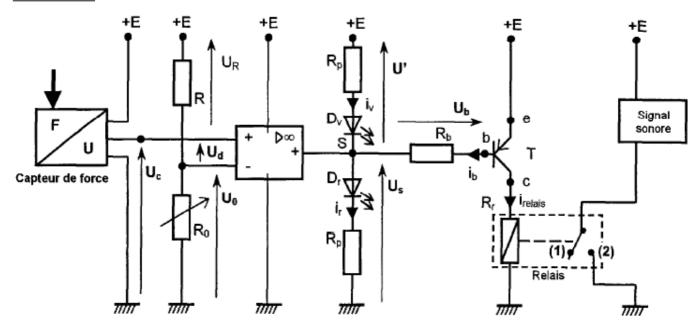
Lorsqu'il est saturé, on a :

$$U_{eb} = 0.7 \text{ V et } U_{ec \text{ sat}} = 0.4 \text{ V}.$$

Fonctionnement du relais :

- quand l'intensité du courant $i_{relais} > 100 \text{ mA}$, l'interrupteur est en position (1).
- quand l'intensité du courant i_{relais} est nulle, l'interrupteur est en position (2).
- 1- Quel est le régime de fonctionnement de l'amplificateur opérationnel ? Justifier votre réponse.
- 2- Exprimer la tension différentielle U_d en fonction de U_C et U_O.
- 3- Exprimer la tension U_0 en fonction de R, R_0 et E.
- 4- Le réglage de R_0 est tel que $U_0 = 7.8$ V. **Déterminer** la valeur de R_0 .

5-


5.1. **Pour quelle valeur** de U_C la tension de sortie de l'amplificateur opérationnel bascule-t-elle ?

5.2. **En déduire** la valeur de la force limite de surcharge.

Pour les questions 6, 7 et 8, on se place dans le cas où la tension de sortie de l'amplificateur opérationnel est égale a Us = E.

- 6-
- 6.1. Calculer l'intensité du courant i_r traversant la diode électroluminescente rouge.
- 6.2. Calculer l'intensité du courant i_v traversant la diode électroluminescente verte.
- 7- Le transistor **est-il** saturé ou bloqué '?
- 8- **Préciser**, dans ce cas, la position du relais et l'état du signal sonore.
- 9- Synthèse : Compléter le tableau du document réponse.

Document 1

Document réponse (à rendre avec la copie)

			Etat			Position	Marche ou arrêt	
Us	i _r (mA)	i _v (mA)	DEL rouge	DEL verte	Transistor	Relais	Signal sonore	Domaine de valeurs de la charge F
E								
ov								