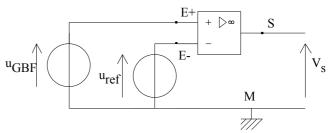
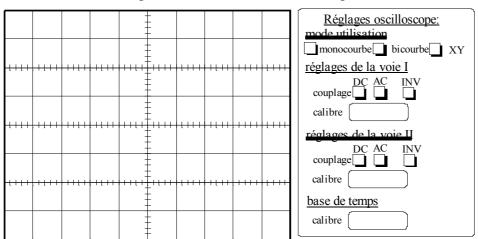
TP n°23: l'amplificateur opérationnel (AO)

Les objectifs du TP sont :


- étudier, expérimentalement et théoriquement, quelques montages à amplificateurs opérationnels;
- utiliser l'oscilloscope en mode XY.

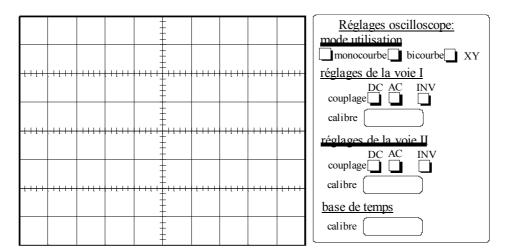
Dans tout le TP, l'amplificateur opérationnel (AO en abrégé) est « polarisé » par une alimentation symétrique (-15V; 0V; +15 V). Pour alléger les schémas, cette alimentation n'est pas représentée.


I. Comparateur simple

u_{ref} est une tension de référence fixée.

u_{GBF} est la tension de sortie du GBF, alternative, triangulaire, d'amplitude 8 V et de fréquence 1 kHz.

- **1- Ajoutez** sur le schéma ci-dessus les branchements à l'oscilloscope si l'on souhaite observer V_s sur la voie I de l'oscilloscope, et u_{GBF} sur la voie II.
- 2- Câblez le montage, en réglant u_{ref}=5V. Appelez le professeur pour vérification (1^{er} appel).
- **3-Relevez** les oscillogrammes de V_s et u_{GBF}, sur une période.



Quelles sont les deux valeurs prises par V_S ?

En déduire le régime de fonctionnement de l'AO dans ce montage.

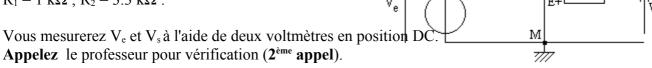
Ce régime de fonctionnement était-il prévisible à la vue du schéma du montage ?

4- Placez l'oscilloscope en mode XY (**lisez** la fiche méthode fournie en dernière page) et **relevez** l'oscillogramme obtenu. **Précisez** bien quelle tension est en X, quelle tension est en Y.

Remarque: la caractéristique V_s= f(u_{GBF}) ,est appelée caractéristique de transfert du montage.

5-	Étude	théoriq	me	•
J-	Liuut	uncorry	uc	•

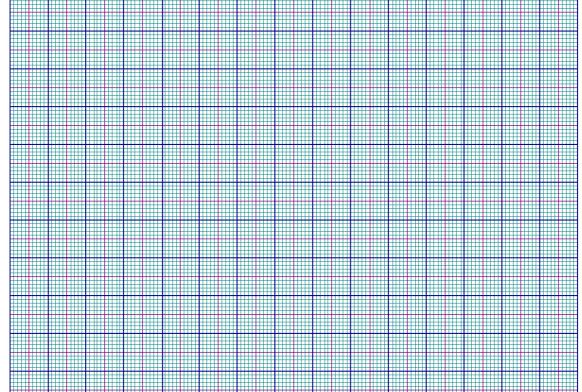
- donnez l'expression de la tension différentielle d'entrée ϵ en fonction de u_{GBF} et u_{ref} .					
- connaissant le régime de fonctionnement de l'AO dans ce montage, expliquez l'allure de la tension V_s en fonction de celles de u_{GBF} et u_{ref} .					
- justifiez le nom de « comparateur » donné à ces montages.					


II. Montage amplificateur inverseur

2.1 Mesures en continu

1- Câblez le montage :

V_e est une tension continue réglable, de −5 V à +5V


 $R_1 = 1 \text{ k}\Omega$; $R_2 = 3.3 \text{ k}\Omega$.

2- Pour V_e variant de -5 V à +5 V, relevez V_s et V_e .

$V_{s}(V)$	
$V_{e}(V)$	

3- Tracez la caractéristique de transfert $V_s = f(V_e)$.

4- Commentez la courbe obtenue : quelle est sa forme ? Distinguez la zone de fonctionnement linéaire et les zones de fonctionnement non linéaire (ou zones de saturation).

5- Calculez le coefficient directeur de la caractéristique dans la zone de fonctionnement linéaire.

2.2 Étude théorique

1- **Précisez** (en le justifiant) le régime de fonctionnement de l'AO.

- 2- **Fléchez** les courants i+ et i- sur le schéma, ainsi que la tension différentielle ε et les tensions aux bornes des résistances que vous exprimerez en fonction de ces résistances et des courants i_1 et i_2 .
- 3- Ecrivez la loi des nœuds au nœud E-. En déduire une relation entre i₁ et i₂.

4- Ecrivez la loi des mailles pour la maille, appelée maille d'entrée, MEE-E+M. En déduire l'expression de i₁ en fonction de V_e et R₁.

5- Ecrivez la loi des mailles pour la maille, appelée maille de sortie, MSE-E+M. En déduire l'expression de V_s en fonction de i_2 et R_2 .

6- **Déduire** des questions 3, 4 et 5 l'expression de V_s en fonction de V_e , R_1 et R_2 .

7- Comparez avec l'expérimentation.

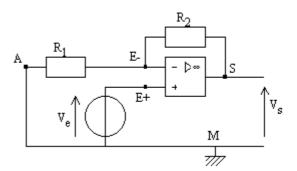
III. Montage amplificateur non inverseur

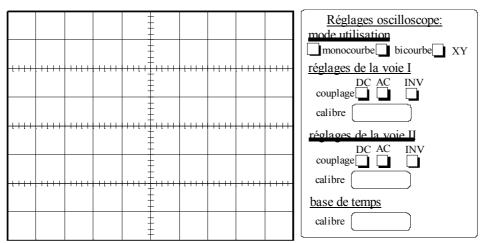
3.1 Mesures en régime variable

1- Câblez le montage :

V_e est la tension de sortie du GBF. Elle est triangulaire, d'amplitude 4 V, et de fréquence 200 Hz.

R₁ et R₂ sont inchangées.


A l'oscilloscope, vous visualiserez V_s sur la voie I, et V_e sur la voie II.


Appelez le professeur pour vérification (3^{ème} appel).

2- Relevez les oscillogrammes de Ve et Vs sur une période.

3- Relevez l'oscillogramme en mode XY. A quoi correspond- il ?

4- Sur l'oscillogramme en mode XY, **indiquez** les zones de fonctionnement linéaire et non linéaire.

3.2 Étude théorique

1- En suivant la methode que vous avez appliquée dans l'étude théorique précédente, déterminez le					
coefficient d'amplification en tension, noté A_v , de ce montage, défini par la relation $A_v = \frac{V_s}{V_e}$ en					
fonction des résistances R ₁ et R ₂ .					
2- Justifiez le nom du montage.					
3- Retrouvez , avec l'oscillogramme en mode XY, la valeur expérimentale de ce gain.	•••				