
Première génie mécanique année scolaire 2010-2011

Exercices sur les associations séries de dipôles en régime sinusoïdal

Exercice n°1: bobine réelle

Une bobine d'inductance L = 10 mH et de résistance interne r = 3.6 Ω est traversée par un courant sinusoïdal alternatif, de fréquence f = 200 Hz et d'intensité efficace I=100mA.

- 1- **Dessinez** le modèle équivalent série de cette bobine.
- 2- Calculez son impédance Z.
- 3- **Déterminez** la valeur efficace de la tension aux bornes de cette bobine.
- 4- **Déterminez** le déphasage φ du courant par rapport à cette tension.

- 1- Construisez la représentation de Fresnel de l'association série ci-dessus. Prenez des vecteurs de longueurs quelconques, et **placez** le vecteur \vec{I} sur l'axe Ox.
- 2- Déterminez l'expression de Z, impédance équivalente du dipôle RLC, en fonction de R, L, C et ω, pulsation des tensions et courant du montage.
- 3- **Déterminez** l'expression de tan φ, où φ est le déphasage de i par rapport à u.
- 4- **Discutez** du signe de φ en fonction de L, C et ω .

Exercice n°3: dipôle RC

Une portion de circuit comprend en série un condensateur de capacité $C = 100 \mu F$ et une 2- Calculez l'inductance L de la bobine. résistance $R = 25 \Omega$. Un GBF impose à cette portion de circuit une tension sinusoïdale de valeur efficace U constante et de fréquence f. Pour une valeur particulière f₀ de la fréquence f, l'intensité efficace I du courant traversant le circuit a la valeur $I_0 = 0.72$ A et la tension efficace aux bornes du condensateur est égale à $U_{c0} = 7.2 \text{ V}$.

- 1- Calculez l'impédance Z_{C0} du condensateur pour $f = f_0$.
- 2- Calculez la fréquence fo de la tension d'alimentation.
- 3- **Déterminez** l'impédance équivalente Z₀ de la portion de circuit AB.
- 4- Calculez la valeur efficace U de la tension d'alimentation.

Exercice n°4: dipôle RC

Un condensateur et une résistance sont placés tous deux en série avec un générateur délivrant une tension sinusoïdale u. La tension efficace aux bornes du condensateur est $U_C = 40 \text{ V}$, celle aux bornes de la résistance est $U_R = 30 \text{ V}$.

- 1- **Quelle est** la valeur efficace U de la tension aux bornes de l'ensemble ?
- 2- Quel est le déphasage φ de l'intensité i du courant dans le circuit par rapport à la tension u?

Exercice n°5: dipôle RLC

Une portion de circuit AB comprend en série un condensateur de capacité $C = 20 \mu F$, une résistance $R = 470 \Omega$ et une bobine d'inductance L = 1.0 H (de résistance négligeable). Une source de tension impose une tension

- $u(t) = 100\sqrt{2}\sin(100\pi \cdot t + \varphi)$ à cette portion de circuit.
- 1- Calculez la valeur efficace I de l'intensité i du courant traversant le circuit.
- 2- Calculez le déphasage φ de l'intensité i du courant par rapport à la tension d'alimentation u.
- 3- En déduire l'expression horaire de l'intensité i.
- 4- Calculez les valeurs efficaces des tensions aux bornes des différents éléments.

Exercice n°6: dipôle RLC à la résonance

On reprend la portion de circuit de l'exercice 3. On place en série avec les dipôles une bobine d'inductance L et de résistance négligeable. Pour la fréquence $f_0 = 160 \text{ Hz}$ et U=19 V (réglages du GBF), la tension u d'alimentation et l'intensité i du courant qui le traverse sont en phase.

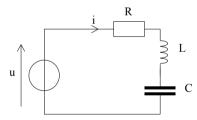
- 1- **Quel phénomène** observe-t-on?
- 3- Calculez la valeur efficace du courant I dans ces conditions.

Première génie mécanique année scolaire 2010-2011

Exercice n°7: association série

Un dipôle AB, constitué d'une bobine d'inductance L et d'une résistance r, est alimenté par une tension sinusoïdale u de fréquence f = 200 Hz.

On mesure la valeur efficace I du courant i, la valeur efficace U de la tension u, et, la valeur absolue de ϕ , déphasage de i par rapport à u.


On trouve I = 0,45 A, U = 80 V et ϕ = 60°.

- 1- **Placez** sur un schéma du montage (à refaire sur votre copie) les branchements à l'oscilloscope si l'on souhaite visualiser la tension u sur la voie 1, et la tension $u_r = r.i$ sur la voie 2. **Placez** également les appareils permettant de mesurer I et U, en précisant bien leur position.
- 2- **Tracez** les vecteurs de Fresnel \vec{I} et \vec{U} en plaçant \vec{I} sur l'axe horizontal (échelles choisies: 0,05 A/cm et 10 V/cm).
- 3- En déduire les vecteurs de Fresnel \vec{U}_r et \vec{U}_L puis les valeurs efficaces U_r et U_L .
- 4- On donne $U_r = 40 \text{ V}$ et $U_L = 70 \text{ V}$. **Déterminer** les valeurs de r et de L.

Exercice n°8: circuit résonant

Soit le circuit RLC série, avec R= 20 Ω , L= 0,10H et C = 40 μ F.

- 1- Calculez la fréquence propre, ou fréquence de résonance, de ce circuit.
- 2- La tension efficace aux bornes du circuit est de 110V. **Calculez** l'intensité efficace I du courant à cette fréquence.

